CS 4100: Introduction to Al

Wayne Snyder
Northeastern University

Lecture 3: Refutational Theorem Proving

Prove: pleasant
Assume: ~ pleasant

(~ pleasant) (3) (~warm v rain v pleasant)
(~warm v rain) (6) (warm)
(rain) (2) (~rain v ~outside v wet)
(~outside v wet) (5) (outside)
(wet) (4) (~wet)

\

0)

contradiction

Propositional Logic: Theorem Proving

In this class we are mostly concerned with how to use logic to prove theorems
from an existing set of assertions; we assume that a set KB ("knowledge base") of
formulae is true, and then try to prove that a formula Q ("query) is a logical
consequence (is entailed by) KB.

Our goal is essentially semantic ("model checking"):

KBEQ Human Tozaczac

but it can be accomplished by entire syntactic means ("deduction"):

KB+ Q C omTeE R PRicessrve-

If we use a sound and complete set of deduction rules, then these are equivalent:

<_.§’ou~ou&9§

S CorMETEAES(

KBEQ L= KBF QO TS GeEmera)y
NARD o PQwe!

_—Con PLETEANESC

Propositional Logic: Automated Theorem Proving

If we are trying to prove theorems using a computer, there are basically two
approaches: '
L EORWARD (WATNEAG

Forward-Reasoning: Use a proof calculus to reason froi KB/o Q.

This is probably the most common method people use in mathematics, often called
"direct proofs" or "proofs by construction." You reason from what you know
toward the statement you are trying to prove.

Example:
Theorem 1. If a and b are consecutive integers, then the sum a + b is odd. KB
* - o /
Proof. Assume that a and b are consecutive ntegers. Because a and b are b= ot [
consecutive we know that b = a + 1. Thus, the sum a + b may be re-written as
2a + 1. Thus, there exists a number k such that a +b = 2k + 1 so the sum a + b pPLvS BASEC
is odd. O MATH FACTS
(TAvra Lao2Es)
SveH &S
Ov EvenN
= = N

~on sore K

Propositional Logic: Forward Reasoning Proofs

If we are trying to prove theorems using a computer, there are basically two
approaches: Direct proofs or proofs by contradiction.

Direct Proof: Use a proof calculus to reason from(KB) to Q.

Fo@wAR 0 - EASo AT MG
Example:

Proof Calculus

A A=>B .
ModusPonens: B N S Problem: John is a programmer. Programmers are
(conTrmiosTTION), -, B 58 @ | cither lazy or hard-working. Ifa person is hard-working
| N . then they are successful and happy. John is not happy.
Hypothetical Syllogism: Y
Disjunctive Syllogism: 4 Vli K & '. Prove: John is lazy.
Conjunction: s
AV B
SR = 2 N

.. etc. ...

See here for a complete exposition of a sound and complete calculus for propositional logic.

Propositional Logic: Automated Theorem Proving
A DB vC

Problem: John is a programmer. Programmers are either lazy or hard-
working. If a person is hard-working then they are successful and

happy. Johnis nothappy. C = D A
B
Prove: John is lazy.

Represent problem in propositional logic:

A = Programmer D = Successful KB ={A A=>BVvVC, C> DAE E}
B = Lazy E = Happy

C = Hard-Working Q =8B

Reason from assertions to theorem: C- - D A E

_ KR - (8 @ C:::EC; GED

%uC

P e 8

O,

Propositional Logic: Automated Theorem Proving

Theorem proving as search:

WS —

f/‘ AL Possrace

ConSeauEmes or WRE
Usrene 0EQvCTXon RULES

Propositional Logic: Refutational Theorem Proving

The second (and usual) way to prove theorems by computer is based on the
following theorem: ROTH RALSE Edcny wited
I sa. KR T wor

Theorem 2.3 (Proof by contradiction) KB Q‘sz and only if KB A —Q is
unsatisfiable.

This should be quite familiar to you as a standard proof technique in math:
To prove some assertion, assume it is not true, the derive a contradiction, €.g.,

the classic pﬁof that the square root of 2 is irrational:

ﬂ

Suppose V2 is rational. That means it can be written

: . hich implie:
as the ratio of two integers p and ¢ which mmplies

p’=2¢" (3)
oo 3 (1) Thus p? is even. The only way this can be true is that
q p itself is even. But then p? is actually divisible by 4.
Hence ¢* and therefore ¢ m e even. So p and g are
where we ._Mu at » and ¢ have no common both even which is ato our assumption
factors. (If theTe are any common factors we cancel fhat they have no common factors. The square root of
them in the numerator and denominator.) Squaring in 2 cannot be rational!
(1) on both sides gives (
: G
o B @ Dve T0 AncxerT (RceLCS,

THeEM ANatxceD: ,.ﬁ_j
|
l

Propositional Logic: Refutational Theorem Proving

This is typically called Refutational Theorem Proving. In contrast with the direct
method, which reasons forward from KB to Q, we reason backward from = Q to
show a contradiction with the assumption that KB is satisfiable.

A= B -B

(Compare Modus Tollens: A

)

We can adapt a forward-reasoning calculus to reason backwards:

i = =18 KB = {A A= BVC, C=>DAE, -E}
0 = B
AsRuC s
AF,—)'C. -——KBU%"*Q}

E (’IE ..L\ & Shreat

R COATRA] Lty

Propositional Logic: Resolution

But there is a very simple calculus involving only 2 rules that works well,
based on a variation of Modus Tollens called Disjunctive Syllogism:

B -B
Disjunctive Syllogism: Gkl 1

; LEMENTNY |
rored LTTEAMS

Resolution: [\,
(A]V---\/A,,,\/B), (ﬁB\/C]V---\/C,,)
(AiV---VA,VC V-V '

((,wsmw:mmd\
OTHEL NULES Rer =

Qﬁéawr:m =$ Qmo
N vR o T

2 Case’

T wkes B TRUE A ﬁ' ~>B . A28

YtiEnd T Mpess OAE = O
0F C; TE B
I‘_ -t PEES B]:m,se A%Q B"’DC— - 7A‘VB ‘1BUC/
Jen IT rMrkeS T < . - —
omn€E QF A:; TRVE A”%C’ '?AVC

Propositional Logic: Resolution

In order to use Resolution, we need to convert all formulae to Conjunctive Normal
Form (as in HW 01).

CoNNECTIVES ARE
Some terminology: STRATT FTED

ST

A Literal is a symbol or its negation: ~ A; 1A TREE

A Clause is a disjunction of literals: ~ (L; V Ly V += L)

A CNF is a conjunction of clauses: (Cy,ACy A Cp)

(C'Qr)n (RV(’S A (DV7A—>A (7533

Propositional Logic: Resolution

Technically, we would need to add two rules to Resolution to make it complete:

' HAUE Tautology: g - —> gAW ﬂ GlA‘VYﬂ‘}
N) p (Av#)

CA'U Contradiction: ol L-As+
1 srel CA NEER PreducE
Ay THENE QT ZHSES

However, since - omg to implement resolution using a computer, 1t 18 |

. 2 LXTéans.
convenient to usg represent clauses and CNFs:

Clause: {Ll, L:ﬁ,, ,Lm} = (Ll \ Lz Voo Lm)

CINE: { {LlrL‘Ea S ?Lm] }5 {LULZ’ "t Lnlg }a Tty {LI?L'?A e :'Lm,f} }

e
R
e

((Ly VLV VL)AL VLV =V Ly) A ALV Ly Ve VL))

Note: We have a useful encoding of literals as integers for computer implementation, but we will not use this in examples.

Propositional Logic: Resolution

However, since we are going to implement resolution using a computer, it is
convenient to use sets to represent clauses and CNFs:

Y 2 L AVSE
s M‘—n&o:tc:r':od

3tz L1

Clause: {L,,Ly,*+,L,} = (LVLV: L,,)

CNEF: { {Ll?LZa e 7Lm] }s {LI’L‘Z? T Lm; I = 7{L1%L27"' ’Lm,,} }

e
R

((Ly VLV VL)AL VLV oV L) A ALy VL,V-VL,))

Note: We have a useful encoding of literals as integers for computer implementation, but we will
not use this in examples.

NOTE : T CaATxsrres CLAKE (. xF
Maces 2| LrTERsL TRVE

\

IF ANO LITER MSI TC UNSATISR=ABLE

Propositional Logic: Resolution

AV A

Using this data structure, the Resolution rule alone is Tautology:

sound and complete calculus for propositional logic. o
Contradiction: I

A clause can NOT have duplicate literals: {«+, A, -}
The empty clause can represent contradiction: {1}
(W SET OF Frihs) ONE Forwns
AMY FQRMVU‘)-ACM RE TURNED (sver ks Q> .
T CEeT.
TATD A SET OF < LAUSES. R SRR, T SIS
Also: Note that both KB and Q are now sets of clauses! C A (Ov ﬁ’>

(L
@/W CCVD)A(CVH»
RETE C A(Dv#) =03 gec, 0%,
>

(Av) n Ca(Por) 4 203 _ DAL
§
'S $am CF F0,3 oYy (Lt S A

| conna N Ceacse Nems Vv

Propositional Logic: Resolution

Let's work our previous example using Resolution: RB= -
iA‘(A’ARDC’C)DAE' »Es
A‘ S>RC T ARl R=8B
Convert to CNF:
C >0.E 2z -Cv(DeE)
T (C vD)A GCUE> ’7Q _—_

1 %A 6] £, pey 1 875
i—;ﬂ‘ C, BAf 57@75
g"’ﬂoﬁ Z% E’C/E}
i—;/}[&} g"E—%
TS b5

S% g CeonramvzcTron)

Propositional Logic: Resolution

Resolution theorem proving now amounts to searching for the empty clause {}

from all the resolvents of KB U . However, you only need to search among
resolvents which had clauses fropmiQ 2s ancestors (this is called the "set of

support" strategy). =
_RR u$06%
\

Neee =s & camiers Seawct TREE
N\

Propositional Logic: Resolution

We will study search strategies in Al in the next chapter but for now note
that we can use

Breadth-First Search:

Depth-First Search: /\\

Another strategy that is sometimes used is a combination of the two called

[terative Deepening: VSE DES 70
SUccEK T ve L&'
, DEeler (EVELS

Propositional Logic: Resolution

Implementation of these is straight-forward:

KB={..}
NQ={C1,C2,..,Cn} #clause set for =Q
Initialize empty Queue
for q in NQ:
Queue.enqueue(q)
while(not Queue.empty()):
R = Queue.dequeue()
for each resolvent A between R and (KB U NQ)):

BFS uses a Queue:

if (A== {}):
Halt with success
else:

Queue.enqueue(A)
Halt with failure

DFS uses a Stack: (Same but use a stack!)

Propositional Logic: Resolution

KB:[{A},{—A,B,C},{—C,D},{—C,E},{—E}]
NOQ: [{ -B } 1]

Queue: [{ -B }]

Queue: [{ C, -A }]

Queue: [{ E, -A '}, { D, -2}, {C}]

Queue: [{ E }, { D}, { E, -A}, { D, -A }]
Queue: [{ D}, { E}, { D}, { E, -A }]
Queue: [{ A}, {E}, { D}, {E}, {D}]
Queue: [{ -A }, { E}, { D}, { E }]
Unsatisfiable!

ERE XIS A compere SCeonrc €
Neee = ¥ HREE

Propositional Logic: Horn Clauses

There 1s an important special case of Resolution which

- Can use Depth-First Search

- With some additional "bells and whistles" can be the basis for a programming
language (Prolog).

Horn Clauses: Definition 2.10 Clauses with at most one positive literal of the form
(A V---V-A,VB) or (mA;V:---V-A,) or B
or (equivalently)
AfN---NAy,=B or AjN---NA,=f or B.

are named Horn clauses (after their inventor). A clause with a single positive

literal is a fact. In clauses with negative and one positive literal, the positive
literal is called the head.

A Horn clause with no positives is called a goal clause, and a clause with
exactly one positive literal is called a definite clause.

Propositional Logic: Horn Clauses

Important facts about Horn Clause logic:

A set of Horn clauses all of which have a positive literal (i.e., not goal clauses) is
always satisfiable; in fact there 1s always a minimal model (which makes as few
symbols true as possible).

Linear resolution (only one resolvent is produced at each step) is a complete
strategy, except that which resolvent to choose is difficult to determine.

A selection rule is a rule for choosing which negative literal in the goal clause to
resolve against at each step in the linear derivation.

SLD Resolution (Selection rule driven Linear resolution for Definite clauses) is
the basis for Prolog.

Propositional Logic: Horn Clauses

Example of SLD Resolution with Horn Clauses.

N Q=&

A
ge—A

CQ——A’A@
O

